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Abstract

An information–theoretic analysis of information hiding is presented in this paper, forming
the theoretical basis for design of information–hiding systems. Information hiding is an emerging
research area which encompasses applications such as copyright protection for digital media,
watermarking, fingerprinting, and steganography. In these applications, information is hidden
within a host data set and is to be reliably communicated to a receiver. The host data set is
purposely corrupted, but in a covert way, designed to be imperceptible to a casual analysis.
Next, an attacker may seek to destroy this hidden information, and for this purpose, introduce
additional distortion to the data set. Cryptographic keys may be available to the information
hider and to the decoder.

We formalize these notions and evaluate the hiding capacity, which upper–bounds the rates
of reliable transmission and quantifies the fundamental tradeoff between three quantities: the
achievable information–hiding rates and the allowed distortion levels for the information hider
and the attacker. The hiding capacity is the value of a game between the information hider
and the attacker. The optimal attack strategy is the solution of a particular rate-distortion
problem, and the optimal hiding strategy is the solution to a channel coding problem. Explicit
formulas for capacity are given in several cases, including the important special case of small
distortions. In some cases, including the one above, the hiding capacity is the same whether or
not the decoder knows the host data set. It is shown that existing information–hiding systems
in the literature operate far below capacity.

Index terms: Information hiding, watermarking, steganography, fingerprinting, cryptography,
game theory, channel capacity, rate-distortion theory, optimal jamming, randomized codes, net-
work information theory.
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1 Introduction

Information hiding is an emerging research area which encompasses applications such as copyright

protection for digital media, watermarking, fingerprinting, and steganography. In particular, wa-

termarking is now a major activity in audio, image, and video processing, and standardization

efforts for JPEG-2000, MPEG-4, and Digital Video Disks are underway. Commercial products are

already being developed. The first three International Workshops on Information Hiding were held

in 1996, 1998, and 1999. Special issues of the IEEE Journal on Selected Areas in Communications

and of the Proceedings of IEEE were recently devoted to copyright and privacy protection [1, 2].

An excellent review of the current state of the art appears in [3], and comprehensive surveys of

image and multimedia watermarking techniques are available from [4, 5]. The majority of the pa-

pers to date have focused on novel ways to hide information and to detect and/or remove hidden

information. However, these papers have lacked a guiding theory describing the fundamental limits

of any information–hiding system. The need for practitioners and system designers to understand

the nature of these fundamental limits has been recognized [1, 3, 5, 6, 7]. We help to close this gap

by providing a theoretical basis for a generic version of the information-hiding problem. We formu-

late the information–hiding problem as a communication problem and seek the maximum rate of

reliable communication through the communication system. Related aspects of this problem have

also been recently explored by Merhav [8] and Chen and Wornell [9]. Also see the recent study by

Hernández and Pérez-González on decision-theoretic aspects of the watermarking problem [10].

In our generic information–hiding problem, a message M is to be embedded in a host data

set X̃ , and the resulting data set X may be subject to data processing operations (attacks) that

attempt to remove any trace of M from X. The information–hiding system should satisfy two

basic requirements. The first requirement is usually referred to as transparency, or unobtrusiveness:

the data set X should be similar to X̃ , according to a suitable distortion measure. The second

requirement is referred to as robustness: the hidden message should survive the application of any

data processing technique (within a certain class) to X. Often there is a limit on the amount of

distortion that an attacker is willing to introduce. A precise statement of the information–hiding

problem is proposed in Sec. 2.

Applications of information hiding are quite diverse [3]. In watermarking applications, the

message contains information such as owner identification and a digital time stamp. The goal

here is usually copyright protection. The message itself is not secret, but it is desired that it

permanently resides within the host data set. Similar requirements exist for systems that embed

object identification in audio, image, or video databases. Closely related to watermarking is the

fingerprinting, or traitor tracing, problem, where in addition to copyright information, the owner of

the data set embeds a serial number, or fingerprint, that uniquely identifies the user of the dataset

and makes it possible to trace any unauthorized use of the data set back to the user [11, 12].

This application is particularly challenging as it opens up the possibility of a collusion between
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different users to remove these fingerprints. A different type of application is the embedding of

data such as multilingual soundtracks in pay–per–view television programs. Here the message is

secret in the sense that it should not be decipherable by unauthorized decoders. Other applications

of information hiding to television broadcasting are described in [13]. Another, more classical

application of information hiding is steganography. Here not only is the message secret, but its very

presence within the host data set should be undetectable. Steganography and related applications

have a long, sometimes romantic history dating from ancient times [3, 6, 14, 15].

This brief discussion suggests that information hiding borrows from a variety of areas, including

signal processing, communications, game theory, and cryptography. Indeed, a vast array of tech-

niques from signal processing and communications have been used to design algorithms for hiding

information (e.g., the spread–spectrum methods popularized by Cox et al. [11], or the dithered

quantization methods developed by Chen and Wornell [16]) and for attempting to remove that

information (by means of techniques such as compression, signal warping, and addition of noise.)

Perceptual models for audio, imagery, and video have helped quantify the distortions introduced

by information–hiding and attack algorithms. Game–theoretic aspects of information hiding have

been explored for special cases by Ettinger et al. [17, 18]. Cryptographic aspects of information

hiding include the use of secret keys to protect the message. It should however be clearly recog-

nized that the functional requirements of cryptography and information hiding as described above

are very different, as secrecy of the message is the main objective in cryptography but is often

not a requirement in information hiding, where reliable embedding of the message within the host

data is often the single most important requirement. Moreover, while cryptography has received

significant attention in the Information Theory community, following Shannon’s landmark paper

[19], information hiding today is an immature subject, both on a mathematical and a technological

level. For instance, there is no consensus today about the formulation of system requirements; and

there is considerable uncertainty about the eventual performance of such systems, as all published

algorithms in current audio and image watermarking literature can be defeated by attacks such as

those in the popular freeware package Stirmark [6, 20].

Our analysis of information hiding as a communication problem begins in Sec. 2. There we

propose a precise formulation of the information–hiding problem and introduce the notions of

covert channel and attack channel that are respectively designed by the information hider and by

the attacker, subject to average distortion constraints. We then seek the maximum rate of reliable

transmission through the communication system. This maximum rate is termed hiding capacity

and is the value of a game played between the information hider and the attacker. In Sec. 3, we

characterize the value of this game under various assumptions about the knowledge available to the

attacker and to the decoder. These assumptions include possible knowledge of the information–

hiding strategy by the attacker, and possible knowledge of the attack strategy by the decoder. It is

not our intent to provide an analysis of every possible scenario that may be encountered in practice,
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but we do investigate a few scenarios that lead to insightful results. To this end, we assume that

a cryptographic key is available to the decoder and investigate two extreme but important special

cases in some depth: in the first case, the host data themselves are available to the decoder [11]; and

in the second case, which we term blind information hiding1, no side information at all is available

[21, 22]. The theory is illustrated using an example based on a Bernoulli process and a Hamming

distortion function.

In Sec. 4, we extend these results to the case of infinite alphabets. This allows us to treat the

case of squared error distortion in Euclidean spaces, which provides considerable insight into the

information–hiding problem. In this case, we are able to give explicit formulas for hiding capacity

under the assumption of Gaussian host data. These formulas are also upper bounds on hiding

capacity for non–Gaussian host data sets. These results show that existing information–hiding

schemes in the literature operate far below capacity.

In Sec. 5, we investigate the case of small distortion. This is a problem of considerable interest,

as many information–hiding schemes are precisely designed to operate at small distortion levels. We

show that the upper bound on hiding capacity in Sec. 4 is in fact tight for non–Gaussian processes.

The results above were derived under the assumption that information hiding strategies and

attacks are memoryless, which greatly simplifies the presentation of the main ideas. In Sec. 6,

we show that such memoryless strategies are in fact optimal in a certain sense, and we extend

our results to a simple but useful class of channels with memory, namely, blockwise memoryless

channels. We also study extensions of our basic setup to steganography problems and to problems

in which the attacker knows the information–hiding codes used. We also present an information–

theoretic formulation of the fingerprinting problem and characterize its solution. Conclusions are

presented in Sec. 7. The proof of some technical results is given in the appendix.

2 Statement of the Problem

Notation. We use the following notation. Random variables are denoted by capital letters (e.g.,

X), and their individual values by lowercase letters (e.g., x). The domains over which random

variables are defined are denoted by script letters (e.g., X ). Sequences of N random variables are

denoted with a superscriptN (e.g., XN = (X1, X2, · · · , XN ) takes its values on the product set XN .)

The probability mass function (p.m.f.) of a random variable X ∈ X is denoted by pX(x), x ∈ X .

When no confusion is possible, we drop the subscript in order to simplify the notation. Special

letters such as Q and Q̃ are reserved for p.m.f.’s of special interest. Given random variables X,Y,Z,

we denote the entropy of X by H(X), the mutual information between X and Y by I(X;Y ), and

the conditional mutual information between X and Y , conditioned on Z, by I(X;Y |Z) [23]. The

Gaussian distribution with mean µ and variance σ2 is denoted by N (µ, σ2).

1By analogy to the established terminology “blind watermarking”.
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2.1 Description of the Problem

There are various formulations of information–hiding problems. We consider the following generic

version in this paper. Referring to Fig. 1, suppose there is a host–data source producing random

variables X̃ taking values in X according to a known probability mass function (p.m.f.) p(x̃), a

cryptographic–key source producing random variables K ∈ K distributed as p(k), and a message

source producing a message M from a message set M. Specifically, X̃, K and M are as follows.

• In typical problems, X̃ is a block of data or transform data (such as discrete cosine transform

coefficients or wavelet coefficients) from an image, video, audio signal, or some other host

data set in which the information hider embeds information. The set X could be a continuum

(such as the l–dimensional cube [0, 1]l) or a discrete set (such as a set of quantized transform

coefficients). In Sections 3 and 6, we assume that X has finite cardinality. The host data are

a sequence X̃N = (X̃1, · · · , X̃N ) of independent and identically distributed (i.i.d.) samples

from p(x̃).

• A cryptographic key KN = (K1, · · · ,KN ) is available both at the encoder and the decoder.

The individual lettersKi are i.i.d. p(k), k ∈ K. Even though we refer toKN as a cryptographic

key, the main role of KN is to provide a source of randomness that is known to the decoder

and enables the use of randomized codes. This is a standard communication technique which

generally leads to improved transmission performance and is often used to design combat

jamming [24, 25]. In information–hiding applications, it is also useful to allow for dependencies

between the host data and the key. We model these dependencies using a joint distribution

p(x̃, k). An example of such dependencies arises when the host data are available at the

decoder, a common assumption in the watermarking literature [3, 4, 11]. In this case, X̃ is

part of the key. Other examples of keys include hash functions [26], location of watermarks

[27, 28], and seeds for modulating pseudo–noise sequences in spread–spectrum systems [15, 22].

In blind–information–hiding applications, the decoder is not allowed access to any secret key,

so anyone can decode the message [21, 16].

• The message M of interest is uniformly distributed over the message set M and is to be

reliably transmitted to the decoder. M may be a cryptographically encrypted message, in

which case an additional cryptographic key is required at the encoder and the decoder.

The information hider passes X̃N , KN , and the message m through a function, producing

composite data XN that are made publicly available2.

2In watermarking applications, XN is often referred to as the watermarked signal. In the information–hiding
literature, M , K, X̃ and X are usually referred to as the mark, the stego–key, the cover–data, and the stego–data,
respectively. We prefer not to use the stego–* terminology to avoid possible confusion: undetectability of the message
is a requirement in steganographic applications only.
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Next, an attacker passes XN through a random attack channel QN (yN |xN ) to produce cor-

rupted data Y N , in an attempt to remove traces of the message M . Clearly this setup includes

deterministic attacks of the form yN = gN (xN ), where gN is a deterministic map, as a special case.

For deterministic attacks, the only possible values of QN (yN |xN ) are zero and one. An important

point is that the attacker would in general benefit from knowing the information–hiding code used

by the encoder, and use this knowledge to design a more effective channel QN (yN |xN ). In partic-

ular, if the information hiding system did not use a key, the attacker would be able to decode the

message and might then be able to remove it from the data XN . From this point of view, it is

desirable to keep the information–hiding code secret. This can be done by including the description

of the code as part of the secret key. A similar technique is often used in the design of randomized

codes for antijamming systems [25]. Our working assumption is that the attacker knows the dis-

tributions of all random variables in the problem but does not know the actual information–hiding

code used. For convenience of notation, we shall not explicitly include the description of the code

as part of KN . In some applications, it would be more realistic to assume that the attacker knows

or is able to learn the information–hiding code; this scenario is briefly considered in Sec. 6.2.

We assume that X and Y take their values in the same set X as X̃ does 3. The decoder

computes an estimate m̂ for the message that was originally transmitted.

Constrained Information–Hiding Systems. The encoders used almost universally in the

watermarking literature use a constrained encoder shown in Fig. 2 [7, 11, 21, 22]. First, a mapping

fromM to codewords UN (M) ∈ XN is defined. This mapping is independent of X̃N . The composite

data are obtained as xN = fN (x̃N , uN , kN ). A simple example would be xi = x̃i +ui for 1 ≤ i ≤ N ,

when X is a finite field. More elaborate designs of fN in the image watermarking literature exploit

the perceptual characteristics of the human visual system and are not additive [7, 4]. While such

designs make it convenient for the information hider to satisfy distortion constraints, heuristic

choices can be largely suboptimal in terms of achievable rates. Moreover, the maps fN (·, uN , kN )

and fN(x̃N , ·, kN ) are often invertible, meaning that the original host data x̃N (resp. uN ) can

be recovered if uN (resp. x̃N ) and kN are known. As our subsequent analysis shows, the above

restrictions on the alphabet for UN (m) and on the information–hiding code fN can substantially

reduce the maximum rate of reliable transmission.

2.2 Distortion Constraints

We now formally define the constraints on the information–hiding and attack strategies. This

completes the mathematical description of the information hiding problem and allows us to derive

achievable rates of reliable transmission for the communication system in Fig. 1.

Definition 2.1 A distortion function is a nonnegative function d : X × X → IR+.
3Our results can be extended without difficulty to the important practical case where X̃, X, and Y takes their

values on different subsets of X .

6



The distortion functions considered are bounded: dmax = max(x,y)∈X×X d(x, y) < ∞. Other

properties of interest are stated explicitly where applicable, including symmetry: d(x, y) = d(y, x)

for all x, y ∈ X , and the condition d(x, y) = 0 ⇔ x = y. The distortion function is extended in a

classical way to a distortion on N–tuples xN = (x1, x2, . . . , xN ) by dN (xN , yN ) = 1
N

∑N
k=1 d(xk, yk).

The theory developed in this paper applies to classical distortion functions such as the Hamming

distance, as well as to any arbitrarily complicated perceptual (auditory or visual) distortion function

that would satisfy the technical conditions above. Note that the condition d(x, y) = 0 ⇔ x = y is

not satisfied by perceptual distortion functions in image processing, due to the presence of threshold

effects in the human visual system [4].

Definition 2.2 A length–N information–hiding code subject to distortion D1 is a triple (M, fN , φN ),

where:

• M is the message set of cardinality |M|;

• fN : XN ×M×KN → XN is the encoder mapping a sequence x̃N , a message m, and a key

kN to a sequence xN = fN (x̃N ,m, kN ). This mapping is subject to the distortion constraint

∑

x̃N∈XN

∑

kN∈KN

∑

m∈M

1

|M| p(x̃
N , kN ) dN (x̃N , fN (x̃N ,m, kN )) ≤ D1;

• φN : XN × KN → M is the decoder mapping the received sequence yN and the key kN to a

decoded message m̂ = φN (yN , kN ).

Note there are distortion constraints but no rate constraints on XN . Typically D1 is small, as

the embedding of information within the host data set is intended to be imperceptible to a casual

analysis. (In watermarking applications, this is known as transparent watermarking.) Also note

that the definition of the distortion constraints involves an averaging with respect to the distribution

p(x̃N , kN ) and with respect to the uniform distribution on the messages. This choice is made for

convenience as it allows us to use classical tools from Shannon theory. Also possible but more

difficult to analyze would be the use of maximum distortion constraints, where the maximum is

with respect to x̃N , kN , and m. The distribution p(x̃N , kN ) and the choice of the encoder mapping

fN induce a distribution p(xN ) on the composite data set.

Definition 2.3 An attack channel with memory, subject to distortion D2, is a sequence of condi-

tional p.m.f.’s QN (yN |xN ) from XN to XN , such that

∑

xN∈XN

∑

yN∈XN

dN (xN , yN )QN (yN |xN ) p(xN ) ≤ D2 (2.1)

for all N ≥ 1.
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If the distortion function is symmetric, it is reasonable to also require that D2 ≥ D1, as the

range of options offered to the attacker should include recovering the host data. Under the definition

(2.1), the attack channel is subject to a constraint on the average distortion between XN and Y N .

Another possibility, briefly considered further in this paper, is to constrain the average distortion

between the host data X̃N and Y N :

∑

m,kN ,x̃N ,yN

dN (x̃N , yN )QN (yN |fN (x̃N ,m, kN )) p(x̃N , kN ) ≤ D2. (2.2)

This constraint only makes senses if the attacker knows fN . Having defined the information–hiding

code fN and the attack channel QN (yN |xN ) as in (2.1), we can now define the game between the

information hider and the attacker.

Definition 2.4 An information–hiding game subject to distortions (D1, D2) consists of an information–

hiding code subject to distortion D1 and an attack channel subject to distortion D2.

The rate of the code is R = 1
N log |M|. The average probability of error is

Pe,N =
1

|M|
∑

m∈M

P (φN (Y N ,KN ) 6= m |M = m) (2.3)

where M is a random variable in M with a uniform probability distribution. That is, Pe,N equals

the probability that an attack successfully removes the message, averaged over all messages. Rates

of reliable transmission and hiding capacity are defined as follows.

Definition 2.5 A rate R is achievable for distortions (D1, D2), if there is a sequence of codes

subject to distortion D1, with rates RN > R such that Pe,N → 0 as N →∞, for any attack subject

to distortion D2.

Definition 2.6 The information–hiding capacity C(D1, D2) is the supremum of all achievable rates

for distortions (D1, D2).

3 Main Results

We have just given an operational definition of information–hiding capacity. In this section, we

show that this capacity is the value of a game between the information hider and the attacker. The

payoff function in this game is a difference between mutual informations. In order to maximize

the payoff, the information hider optimally designs the covert channel defined in Sec. 3.1. In order

to minimize the payoff, the attacker designs an optimal memoryless attack channel, defined in

Sec. 3.2. An expression for the information–hiding capacity is derived in terms of the covert and

attack channels in Sec. 3.3 and is applied to a simple example in Sec. 3.4. Game–theoretic aspects

of the information–hiding problem are studied in Sec. 3.5.
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3.1 Covert Channel

Consider an auxiliary random variable U defined over an arbitrary, finite set U . The role of U will

become apparent in Sec. 3.3. We now define the notion of covert channel. Note that the distortion

constraint below only involves the marginal distribution
∑

u Q̃(x, u|x̃, k).

Definition 3.1 A covert channel subject to distortion D1 is a conditional p.m.f. Q̃(x, u|x̃, k) from

X ×K to X × U , such that

∑

x,x̃,k,u

d(x̃, x)Q̃(x, u|x̃, k)p(x̃, k) ≤ D1. (3.1)

The length–N memoryless extension of the channel is the conditional p.m.f.

Q̃N (xN , uN |x̃N , kN ) =
N
∏

i=1

Q̃i(xi, ui|x̃i, ki), ∀N ≥ 1.

Definition 3.2 The compound covert channel subject to distortion D1 is the set Q̃ of all covert

channels satisfying (3.1).

To analyze the information–hiding system, we find it convenient to write Q̃ in the cascaded

form

Q̃(x, u|x̃, k) = p(x|x̃, u, k)p(u|x̃, k), (3.2)

where we refer to p(x|x̃, u, k) as the main covert channel and to p(u|x̃, k) as the auxiliary covert

channel. Note that the distortion constraint (3.1) involves Q̃(x, u|x̃, k) via the main covert channel

only.

3.2 Attack Channel

Definition 3.3 An attack channel subject to distortion D2 is a conditional p.m.f. Q(y|x) from X
to X , such that

∑

x,y

d(x, y)Q(y|x)p(x) ≤ D2. (3.3)

The length–N memoryless extension of the attack channel is the conditional p.m.f.

QN (yN |xN ) =
N
∏

i=1

Qi(yi|xi).

Definition 3.4 The compound attack channel subject to distortion D2 is the set Q of all attack

channels of the form (3.3).
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3.3 Hiding Capacity

We now introduce Theorem 3.3, which we view as the basic theorem of information hiding. For

any arbitrarily complicated encoding scheme and memoryless attack, this theorem upper bounds

the rate of reliable transmission for the information hider, under the assumptions that the attacker

knows the covert channel, and that the decoder knows both the covert channel and the attack

channel. These assumptions are weaker than they appear at first sight. Even if the transition

probabilities of the covert and attack channels are not given, it is to be expected that the attacker

and the decoder will be able to learn them, provided that N is large enough. While these assump-

tions are reasonable, they might not always be satisfied in practice. We return to this issue, and

to game–theoretic aspects of this problem, in Sec. 3.5.

The proof of Theorem 3.3 relies on a proof of achievability (Prop. 3.1) and a converse (Prop. 3.2),

for a fixed attack channel. Achievability is proved using a random bin coding technique [23, p. 410].

The decoder uses joint typical set decoding. The proof of Prop. 3.1 is an adaptation of techniques

used by Gel’fand and Pinsker [29] to derive the capacity of a discrete memoryless channel with

random parameters (state of the channel) that are known at the encoder but not at the decoder,

see Fig. 3. The capacity of this channel is given by C = maxp(x,u|s)[I(U ;Y ) − I(U ;S)] where S

is the random channel parameter (“state” of the channel), and U is an auxiliary random variable.

These results have been extended by Heegard and El Gamal to find the capacity of computer

memory with defects [30]. In the information–hiding problem, the host data X̃ plays the role

of the random parameter S in Gel’fand and Pinsker’s work. The analogy between Gel’fand and

Pinsker’s work and watermarking problems was first identified by Chen [9]. The converse theorem

(Proposition 3.2) cannot be proved using the same technique as in [29, 31], because the attack

channel is not known to the encoder, so we need the Markov chain property (U, X̃,K) → X → Y

(see proof of Theorem 3.3.) Other differences between our setup and Gel’fand and Pinsker’s include

the presence of distortion constraints, and the availability of side information (key) at the encoder

and the decoder. Proofs of both propositions can be found in the appendix.

Proposition 3.1 (Achievability for Fixed Memoryless Attack Channel).

Fix the attack channel Q(y|x) and select Q̃(x, u|x̃, k) that maximizes

J(Q̃,Q) = I(U ;Y |K)− I(U ; X̃ |K) (3.4)

over Q̃. For any ε > 0 and sufficiently large N , there exists a length–N information–hiding code

(M, fN , φN ) with Pe,N < ε, and |M| > 2N [I(U ;Y |K)−I(U ;X̃|K)−ε].

Proposition 3.2 (Converse for Fixed Memoryless Attack Channel).

Consider a length–N information–hiding code (M, fN , φN ) with rate R = 1
N log |M|, and an attack

channel Q(y|x). If for any ε > 0 we have Pe,N < ε as N → ∞, then there exists a finite alphabet

U and a covert channel Q̃(x, u|x̃, k) ∈ Q̃ such that R ≤ I(U ;Y |K)− I(U ; X̃ |K).
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Theorem 3.3 Assume the attacker knows the covert channel and the decoder knows the covert

and attack channels. For any information hiding game subject to distortions (D1, D2), a rate R is

achievable if and only if R < C, where C is given by

C = max
Q̃(x,u|x̃,k)∈Q̃

min
Q(y|x)∈Q

J(Q̃,Q) (3.5)

where U is a random variable defined over an arbitrary finite alphabet U , (U, X̃,K) → X → Y is

a Markov chain, and J(Q̃,Q) is given by (3.4).

Proof. Fix the attack channel Q ∈ Q. Proposition 3.1 shows that all rates below maxQ̃∈Q̃ J(Q̃,Q)

are achievable. Proposition 3.2 implies the converse result, namely, no reliable transmission is

possible above that rate. Since the attacker knows Q̃, he is able to choose Q so as to minimize

the rate of transmission, under any possible information–hiding strategy. The information hider

uses a minimum-size message set M (whose rate is given by (3.5)), and his encoding strategy is

independent of the actual attack channel used (see proof of Prop. 3.1.) Hence the rate of reliable

transmission is given by (3.5). Note that the minimum over Q can be attained because (3.4) is a

bounded, continuous function of Q, and the admissible set Q is compact. Dually, the maximum of

minQ J(Q̃,Q) over Q̃ can be attained because minQ J(Q̃,Q) is a nonnegative, continuous function

of Q̃, and the admissible set Q̃ is compact. 2

Corollary 3.4 below shows that in the important special case K = X̃ (host data available at the

decoder), there is no loss in optimality in restricting the encoder to be in the constrained class of

Fig. 2. The solution becomes a saddlepoint of I(X;Y |X̃).

Corollary 3.4 In the special case K = X̃, U is optimal if and only if X can be written in the

form X = f(X̃, U), where the map f(x̃, ·) is invertible for all x̃. In particular, the design U = X

is optimal. The hiding capacity is given by

C = max
p(x|x̃)

min
Q(y|x)

I(X;Y |X̃) = min
Q(y|x)

max
p(x|x̃)

I(X;Y |X̃). (3.6)

Proof. When K = X̃ , the payoff function (3.4) can be written as

I(U ;Y |X̃)− I(U ; X̃ |X̃) = I(U ;Y |X̃) = I(U, X̃ ;Y |X̃) ≤ I(X;Y |X̃), (3.7)

where the inequality follows from the data processing inequality applied to the Markov chain

(U, X̃) → X → Y . The inequality is satisfied with equality when U = X. Hence the capacity is

given by the first inequality in (3.6). The objective function I(X;Y |X̃) is convex in Q(y|x) (for

fixed p(x|x̃)) and concave in p(y|x̃) =
∑

xQ(y|x)p(x|x̃), and hence concave in p(x|x̃) (for fixed

Q(y|x)). Moreover, the sets Q̃ and Q are convex. By application of the Von Neuman’s min-max

theorem [34], the order of maximization and minimization can be switched. 2
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The hiding capacity (3.5) clearly depends on (D1, D2), which can be emphasized by writing

C(D1, D2). The function C(D1, D2) satisfies the following elementary properties.

1. C(D1, D2) is monotonically increasing in D1 and monotonically decreasing in D2.

2. C(D1, D2) is convex in D2.

3. C(D1, D2) is upper–bounded by the entropy of Y :

C(D1, D2) ≤ max
Q̃∈Q̃

min
Q∈Q

H(Y ) ≤ log |X |.

Informally, it is easier to hide information in complex datasets than in simple ones.

4. If the distortion function satisfies the condition d(x, y) = 0 ⇔ x = y, we have X = X̃ when

D1 = 0, i.e., no information can be transmitted. In this case, C(0, D2) = 0 for all D2.

5. For any fixed D1, if D2 is large enough, there exists an admissible attack that generates

Y N independently of XN , thereby eliminating all traces of the message. More precisely, let

D∗
2 = miny

∑

x d(x, y)p(x) and y∗ be the value of y that achieves this minimum. For all

D2 ≥ D∗
2 , the deterministic attack Q(y|x) = δ(y − y∗) is admissible, and C(D1, D2) = 0 for

all D1. Our previous assumptions imply that D∗
2 is finite but depends on D1.

Comments.

1. Theorem 3.3 states that the problem reduces to a rate-distortion–constrained capacity game.

The optimal attack is the solution to a rate-distortion problem, indicating the important role

of data compression in the theory. The optimal information–hiding strategy is the solution

to a constrained capacity problem.

2. The information–hiding problem is also related to the wiretapping problem in cryptography

[24, p. 407]. The wiretapping problem involves communication of data to a receiver via a direct

channel, and presence of a wiretapper that observes these data through a second channel, and

knows the codes used by the transmitter. The secrecy capacity is the maximum rate of reliable

transmission under the constraint that the equivocation rate for the wiretapper is maximum.

The secrecy capacity is zero if the wiretapper’s channel is less noisy than the direct channel.

In the information–hiding problem, the attacker does more than being a simple wiretapper

as he maliciously degrades the direct channel from M to Y N , which is at least as noisy as

the wiretapper’s channel (from M to XN ). The secrecy capacity is zero unless cryptographic

keys are used.

3. Choosing U independent of X̃ , as in conventional watermarking algorithms (see Fig. 2), would

in general be suboptimal. Evaluation of (3.4) shows that rates of reliable transmission in that

case are upper bounded by I(U ;Y |K).

12



4. Assume a symmetric distortion measure, and the condition D2 ≥ D1. If the attacker somehow

knew the host signal X̃N , the optimal attack would consist in setting Y N = X̃N . In this

case, the output of the attack no longer contains any trace of the message, and the hiding

capacity is zero. This simple observation motivates a potentially powerful attack, in which

the attacker attempts to construct an estimate of X̃N . Specifically, if the attacker is able to

construct Y such that H(Y |X̃) < ε, the payoff is upper–bounded by

I(U ;Y |K)− I(U ; X̃ |K)

= [I(U ; X̃, Y |K)− I(U ; X̃ |Y,K)]− [I(U ; X̃, Y |K)− I(U ;Y |X̃,K)]

≤ I(U ;Y |X̃,K) ≤ H(Y |X̃,K) ≤ H(Y |X̃) < ε, (3.8)

for all U . Hence C < ε.

Proposition 3.5 below shows that the payoff (3.4) is convex in Q but is neither convex nor

concave in Q̃. However, it is useful to decompose Q̃ as indicated in (3.2). We then have the

following properties. See the appendix for a proof.

Proposition 3.5 (Convexity Properties of Payoff Function)

(i) The sets Q̃ and Q are convex.

(ii) For fixed p(x̃, k) and Q̃(x, u|x̃, k), the payoff (3.4) is convex in Q(y|x).

(iii) For fixed p(x̃, k), p(x|x̃, u, k) and Q(y|x), (3.4) is concave in p(u|x̃, k).

(iv) For fixed p(x̃, k), p(u|x̃, k) and Q(y|x), (3.4) is convex in p(x|x̃, u, k).

(v) To evaluate the maximum of (3.4) over Q̃, one can restrict U to sets of cardinality 2|X |+ |K|.

(vi) For fixed Q(y|x), (3.4) is maximized by Q̃(x, u|x̃, k) = p(x|x̃, u, k)p(u|x̃, k) that has the fol-

lowing property. The cardinality of the support set X (x̃, u, k) of p(x|x̃, u, k) is equal to one4

for all (x̃, u, k), except perhaps for one single value of (x̃, u, k), for which the cardinality of

X (x̃, u, k) is equal to two. If the latter condition is not satisfied, the distortion constraint

(3.1) is inactive.

3.4 Example: Binary Channel

We illustrate Theorem 3.3 and Corollary 3.4 using a simple problem involving a binary alphabet

X = {0, 1} and a Bernoulli source X̃ with parameter 1
2 . The distortion function is Hamming

distance: d(x, y) = 0 if x = y and d(x, y) = 1 otherwise. We assume the host data are available at

the decoder: K = X̃. The problem is illustrated in Fig. 4, and its solution is stated in Prop. 3.6.

One can think of the random variable Z as a direct representation of the message M itself.
4In other words, x is a deterministic function of (x̃, u, k).
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Proposition 3.6 For D1, D2 ≤ 1
2 , the hiding capacity for the information–hiding game above is

given by

C = H(D1 ? D2)−H(D2)

where we let H(t) = −t log t − (1 − t) log(1 − t) , and D1 ? D2 = D1(1 −D2) +D2(1 −D1). The

capacity–achieving distributions are as follows. The composite data is given by X = X̃ ⊕ Z, where

⊕ denotes exclusive or, and Z is a Bernoulli(D1) random variable. Both U = X and U = Z are

optimal. The optimal attack is given by Y = X⊕W , where W is a Bernoulli(D2) random variable.

For D1 ≥ 1
2 and D2 <

1
2 , the hiding capacity is C = 1 −H(D2). For D2 ≥ 1

2 , the hiding capacity

is equal to zero.

Proof. By application of Corollary 3.4, we need to verify that the distributions above for Z = X̃⊕X
and W = X ⊕ Y are a saddlepoint of the payoff I(X;Y |X̃). First we fix Q(y|x). Assuming

D1, D2 ≤ 1
2 , we have

I(X;Y |X̃)
(a)
= H(Y |X̃)−H(Y |X, X̃)
(b)
= H(Y |X̃)−H(Y |X)

= H(Y − X̃|X̃)−H(W )

= H(Z ⊕W |X̃)−H(D2)

(c)

≤ H(Z ⊕W )−H(D2)

(d)

≤ H(D1 ? D2)−H(D2)

where (a) is by definition of the conditional mutual information, (b) is because X̃ → X → Y is a

Markov chain, and inequality (c) holds because conditioning reduces entropy. Equality is achieved

in (c) if and only if Z⊕W , hence Z, is independent of X̃. Inequality (d) holds because Z and W are

independent (as Z → X → W forms a Markov chain), and Pr[Z = 1] ≤ D1. Equality is achieved

if Z is Bernoulli(D1). The distribution p(x|x̃) above satisfies both inequalities with equality and

hence maximizes I(X;Y |X̃).

The second step is to fix p(x|x̃) and minimize I(X;Y |X̃) over Q(y|x). With p(x|x̃) specified as

above, Z and X are independent. Since Z → X → W forms a Markov chain, Z and W are also

independent. We have

I(X;Y |X̃) = I(X ⊕ X̃;Y ⊕ X̃ |X̃)

= H(Z)−H(Z|Z ⊕W, X̃)

(a)
≥ H(Z)−H(Z|Z ⊕W )

= I(Z;Z ⊕W )

(b)

≥ H(D1 ? D2)−H(D2)
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where inequality (a) holds because conditioning reduces entropy, and inequality (b) holds because

Z and W are independent, and Pr[W = 1] ≤ D2, with equality if W is Bernoulli(D2).

The derivation of hiding capacity in the cases D1 ≥ 1
2 or D2 ≥ 1

2 is straightforward. 2

The encoding system for X above is the same as Vernam’s one–time pad encryption system

[32]. The distributions p(Z) and p(Z|X) are identical, which means that this system satisfies

Shannon’s perfect secrecy condition [19, 32]: observing the data X does not provide the attacker

with any information about the message Z. Moreover, the encoding system above satisfies the

basic requirement of a steganographic system: the distributions p(x̃) and p(x) are identical, so it

is impossible for an observer (such as the attacker) to determine whether the data xN were drawn

from p(x̃N ) or from p(xN ).

3.5 Game–Theoretic Formulation of the Information Hiding Problem

The information hider selects an alphabet U and a covert channel Q̃(x, u|x̃, k) from Q̃. The attacker

selects an attack channel Q(y|x) from Q. In Theorem 3.3, it is assumed that the attacker knows Q̃,

and the decoder knows both Q̃ and Q. These assumptions are reasonable but may not be satisfied

in practice. Let us examine some alternative assumptions the information hider and the attacker

could make.

Information Hider. The information hider wants a guaranteed rate of reliable transmission

under any attack that satisfies the distortion constraint (3.3). Therefore he may want to design

the covert channel under the conservative assumption that the attacker knows the covert channel

used. Such an approach is often referred to as a secure strategy in game theory [34]. The rate the

information hider is able to guarantee is given by (3.5), which is restated below for convenience:

C = max
Q̃(x,u|x̃,k)∈Q̃

min
Q(y|x)∈Q

J(Q̃,Q).

For the rate (3.5) to be achievable, the decoder must know the attack channel used, or be able to

estimate it reliably from the received data. (Likewise, the attacker must know the covert channel

used, or be able to estimate it reliably from the composite data.) In order to reliably estimate

Q ∈ Q, a universal decoder over the class Q would have to be available. There is a well–developed

theory of universal decoding for compound channels [24, 33], but extension of this theory and

development of universal decoding algorithms for information hiding is still an open problem.

Attacker. The attacker wants to minimize the rate of reliable transmission for any information–

hiding strategy that satisfies the distortion constraint (3.1). Therefore he may design the attack

channel under the conservative assumption that the information hider and the decoder know the

attack channel used. Under this assumption, the attacker can guarantee that information cannot

be reliably transmitted at a rate greater than

C = min
Q(y|x)∈Q

max
Q̃(x,u|x̃,k)∈Q̃

J(Q̃,Q). (3.9)
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This assumption would be overly conservative in many information–hiding problems.

Saddlepoint. The capacities in (3.5) and (3.9) are respectively lower and upper values of the

game [34]. If these capacities are equal, as in Corollary 3.4, the common value is a saddlepoint of

the game. The information hider and the attacker will respectively choose a channel Q̃∗(x, u|x̃, k)
and a channel Q∗(y|x) that satisfy the saddlepoint condition

J(Q̃,Q∗) ≤ J(Q̃∗, Q∗) ≤ J(Q̃∗, Q), ∀Q̃ ∈ Q̃,∀Q ∈ Q. (3.10)

This is a stable Nash equilibrium of the game. It is in the interest of neither party to deviate from

a saddlepoint strategy [34]. For other examples of saddlepoint strategies in information–theoretic

games, see [35, 36] [23, p. 263].

Mixed Strategies. According to Proposition 3.5, the payoff J(Q̃,Q) is always convex in Q,

and in some cases, is concave in Q̃ (see for instance Corollary 3.4.) In such cases, the game admits

a unique saddlepoint, and the capacities in (3.5) and (3.9) are equal. Consider now the general

case when the payoff is not concave in Q̃, and neither player knows the strategy the opponent will

be using. This suggests the use of a randomized strategy (or mixed strategy in game–theoretic ter-

minology) as an alternative to the pure strategies above. In a randomized strategy, the information

hider and the attacker respectively select strategies Q̃ and Q according to properly selected proba-

bility distributions P̃ (Q̃) and P (Q), and use these strategies throughout the transmission. In other

words, the covert and attack channels are no longer ergodic. For instance, a set of possible strate-

gies for the attacker may include attacks from the Stirmark software package [20] (when the host

data set is an image), such as an additive white Gaussian noise attack, a signal-dependent random

attack, and a JPEG compression attack; and a set of possible strategies for the information hider

may include a spread-spectrum encoding strategy [11] as well as a dithered-quantization strategy

[16]. For mixed strategies, the payoff is j(P̃ , P ) =
∫ ∫

J(Q̃,Q) dP̃ (Q̃) dP (Q), to be maximized over

P̃ by the information hider and minimized over P by the attacker. Pure strategies are a special case

of mixed strategies in which P̃ (Q̃) and P (Q) are point mass functions. We impose the (nonergodic)

average distortion constraints

∫

∑

x,x̃,u,k

Q̃(x, u|x̃, k)p(x̃, k)d(x̃, x) dP̃ (Q̃) ≤ D1, (3.11)

∫

∑

x,y

Q(y|x)p(x)d(x, y) dP (Q) ≤ D2, (3.12)

on P̃ (Q̃) and P (Q) instead of the constraints (3.1) and (3.3). The advantage of (3.11) and (3.12)

is that only two distortion constraints need to be considered, instead of one for every possible pair

(Q̃,Q), as in (3.1) (3.3). However, a meaningful formulation of the game is difficult due to the fact

that the admissible set for P (Q) depends on P̃ (Q̃) via the distribution p(x). In game–theoretic

terminology, the constrained sets are coupled, or nonrectangular [34, p. 175—177].
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Fortunately, in some instances, the coupling between the constrained sets can be neglected.

This is the case for the small–distortion problem in Sec. 5, where p(x) asymptotically tends to

p(x̃) which is independent of the information–hiding strategy. If the coupling between constrained

sets can be neglected, game–theoretic analysis yields the following results. First note that the

function J(Q̃,Q) is continuous and bounded from above and below, and its arguments range over

a compact subset (probability simplex) of the finite–dimensional Euclidean space IR |X |. Using

the extension of Von Neuman’s min-max theorem to such function sets [34, Sec. 4.3], we obtain

supP̃ infP j(P̃ , P ) = infP supP̃ j(P̃ , P ) = C. The supremum and infimum are achieved by some

pair of strategies P̃ (Q̃) and P (Q), and the value of the game is C. These strategies are optimal

for both players, and we have C ≤ C ≤ C. As discussed above, if J(Q̃,Q) is concave/convex,

then the optimal strategies are pure strategies, i.e., P̃ (Q̃) and P (Q) are point mass functions. In

general, J(Q̃,Q) is convex in Q but not concave in Q̃. This implies the optimal strategy for the

attacker is a pure strategy, while the optimal strategy for the information hider is a mixed strategy.

At this point, we recall that the use of a mixed strategy for the communicator is a classical one

in jamming problems. Randomized codes are an example of such an approach [25] [33, p. 2163].

Here randomization is due to the use of a probabilistic distribution over Q̃ rather than to the use

of cryptographic keys, as discussed in the Introduction. Fig. 5 illustrates the game between the

information hider and the attacker. We reemphasize that mixed strategies are useful only if neither

player knows the strategy used by the adversary.

4 Continuous Alphabets

The results above can be extended to the case of infinite alphabets X ,U ,K. This is done by

extending the definition of mutual information to such alphabets [37, Ch. 7.2]:

I(U ;Y |K) = sup I(Ud;Yd|Kd) and I(U ; X̃ |K) = sup I(Ud, X̃d|Kd)

where the supremum is over all partitions X̃d, Kd, Xd and Yd of the channel input and output

alphabets, and over all finite–alphabet variables Ud. If all probability density functions are “well

behaved”, the results from Sec. 3 still apply, provided that sums are replaced with integrals.

The case of Gaussian X̃ and squared–error distortion measure d(x, y) is of considerable interest,

as it becomes possible to explicitly compute the distributions that achieve capacity. We refer to

this case as the Gaussian channel. Here X is the set IR of real numbers, X̃ ∼ N (0, σ2), and

d(x, y) = (x − y)2. We consider two special cases. In the first one, the key K is the host data X̃

itself. In the second case (blind information hiding), no key is available at the decoder.

The case of non–Gaussian p(x̃) is of course more difficult, but useful results can still be ob-

tained. In particular, lower bounds on hiding capacity can be computed by evaluating the optimal

attack under a particular, generally suboptimal, information–hiding strategy Q̃∗. Likewise, upper
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bounds can be computed by evaluating the optimal information–hiding strategy under a particular

(generally suboptimal) attack Q∗:

Clb = min
Q(y|x)∈Q

J(Q̃∗, Q) ≤ C ≤ Cub = max
Q̃(x,u|x̃,k)∈Q̃

J(Q̃,Q∗). (4.1)

We found this bounding technique to be very useful for non–Gaussian channels, provided that Q̃∗

and Q∗ are suitably selected (see Sec. 5). Of course, if the lower and upper bounds in (4.1) are

equal, the pair (Q̃∗, Q∗) is a saddlepoint of the payoff (3.4).

4.1 Host Signal is Available at the Decoder

Theorem 4.1 gives the hiding capacity when the host data is available at the decoder. The capacity–

achieving distributions for Gaussian p(x̃) are given in Fig. 6.

Theorem 4.1 Let X = IR and d(x, y) = (x−y)2 be the squared–error distortion measure. Assume

that K = X̃. Then we have

(i) If X̃ ∼ N (0, σ2), the hiding capacity is given by

C = C = C =

{

1
2 log

(

1 + D1

βD2

)

: if D2 < σ2 +D1,

0 : otherwise
(4.2)

where β =
(

1− D2

σ2+D1

)−1
. The optimal covert channel is given by X = X̃+Z, where Z ∼ N (0, D1)

is independent of X̃. The optimal attack is the Gaussian test channel,

Q∗(y|x) =

{

N (β−1x, β−1D2) : if D2 < σ2 +D1

δ(y) : else.
(4.3)

(ii) If X̃ is non–Gaussian with mean zero and variance σ2, (4.2) is an upper bound on hiding

capacity.

Proof: See appendix.

In the small–distortion scenario D1 = D2 << σ2, the capacity (4.2) would be nearly 1
2 bit per

sample. In contrast, the capacity is zero if D2 ≥ σ2 +D1, corresponding to the case of a host signal

that is weak relative to the specified distortion levels. The zero–capacity problem is precisely the

main limitation of some early watermarking schemes, in which watermarks were hidden in the least

significant bit(s) of the host signal in a straightforward attempt to introduce minimal distortion.

Unfortunately, such watermarks were easy to eliminate by an attacker that would simply randomize

the least significant bit(s), and cause a minimal amount of distortion in the process. Cox et al.

[11] were among the first researchers to realize that watermarks should be hidden in significant

components of the host signal instead.
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4.2 Blind Information Hiding

Rates of reliable transmission for blind information hiding clearly cannot be higher than the rates

in the case the decoder has access to side information (such as the host data themselves, or a

cryptographic key). Hence hiding capacity is upper-bounded by (4.2) for any p(x̃).

Theorem 4.2 below gives the optimal blind–information–hiding strategy and the optimal attack

for Gaussian p(x̃). This pair of optimal strategies forms a saddlepoint solution. The optimal attack

Q(y|x) is again the Gaussian test channel (4.3). The optimal distribution Q̃(x, u|x̃) the same

optimal distribution that achieves capacity in a problem studied by Costa [38]. Costa’s result is an

elegant extension of Gel’fand and Pinsker’s results (see Fig. 3) to the case of additive white Gaussian

noise channels with input power constraints. The hiding capacity for the blind–information–hiding

problem is given by (4.2) again! In other words, the achievable rate of reliable transmission is the

same whether or not the host data are known at the decoder 5.

Theorem 4.2 Let X = IR and d(x, y) = (x−y)2 be the squared–error distortion measure. Assume

that X̃ is N (0, σ2). Then the following distribution yields a saddlepoint of the payoff (3.4): X =

X̃ + Z, U = Z + αX̃, where α = D1

D1+βD2
, β is given below (4.3), Z ∼ N (0, D1) is independent of

X̃, and Q(y|x) is the Gaussian test channel (4.3). The hiding capacity is given by (4.2).

Proof: See appendix.

Comments.

1. Consider the use of a covert channel of the form U = Z + αX̃ , where α is not given by the

optimal value D1

D2+βD2
in Theorem 4.2. The rate of reliable transmission is given by (E.1) in

the appendix. A special case of this design is the constrained encoding strategy of Fig. 2,

in which a codebook is designed for U = Z (corresponding to α = 0 above.) In the small–

distortion case, σ2 >> D1, D2, the host signal acts as a strong interference, and the capacity

of the cascaded covert/attack channel is limited by this interferer. From (E.1), we obtain the

rate of reliable transmission for that suboptimal class of encoders as

R(0) =
1

2
log

(

1 +
D1

σ2 + βD2

)

≈ D1

2(ln 2)σ2
. (4.4)

Comparison of (4.2) and (4.4) shows that dramatic improvements are possible by using an

optimal encoding strategy.

2. Consider the design of a codebook for U = X (corresponding to α = 1 above). One practical

such system, based on dithered quantizers, is described in [16]. Equation (E.1) shows that the

5This conclusion was originally obtained by Chen for a closely related problem that assumes a fixed additive white
Gaussian noise attack channel [9].
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achievable rates for this system are given by R(1) = 1
2 log D1(D1+σ2+βD2)

βD2(D1+σ2) . After some algebra,

it can be seen that these rates are zero for D2 ≥ D1. Hence such systems are unreliable if

D2 ≥ D1. This discussion emphasizes the need to design a codebook for U = Z + αX̃ rather

than for Z or for X.

3. Consider now two plausible but suboptimal attacks. The additive white Gaussian noise attack

Q(y|x) ∼ N (x,D2) is suboptimal but is asymptotically optimal for σ2 >> D1, D2, because

β → 1 in this case. In contrast, the attack y = argmaxx̃ p(x̃|x), which attempts to degrade

the message by recovering X̃ using the Maximum A Posteriori (MAP) estimation rule, is

completely inefficient. Here Y = σ2

σ2+D1
X, so X is an invertible function of Y . Hence the

data processing inequality I(U ;Y ) ≤ I(U ;X) is satisfied with equality, and the attack fails to

remove any information. However, an “invertible attack” can be very effective if a suboptimal

decoder is used; for instance, a simple scaling of pixel intensities has been known to defeat

some image watermarking decoders.

4. Fig. 7 summarizes the various designs for Gaussian channels.

5. Consider again the small–distortion case σ2 >> D1, D2. To achieve the capacity bound

using the random bin technique, we need a codebook of size not 2NR but 2N [R+I(U ;X̃)], where

I(U ; X̃) = 1
2 log(1+ α2σ2

D1
) is typically very large relative to R = 1

2 log(1+ D1

βD2
). This suggests

it may be difficult to approach the capacity bound using practical information–hiding codes.

4.3 Optimal Decoder

Optimal decoding performance is obtained using the MAP decoding rule ûN = argmaxuN∈C p(u
N |yN , kN ),

where C denotes the codebook for UN . For the optimal information–hiding and attack strategies

of Theorem 4.2, we let RUY =

(

E(U2) E(UY )
E(UY ) E(Y 2)

)

and obtain

ûN = argmin
uN∈C

N
∑

i=1

(

ui

yi

)T

R−1
UY

(

ui

yi

)

= argmin
uN∈C

N
∑

i=1

(ui − γyi)
2 (4.5)

where γ = E[UY ]
E[Y 2]

= D1+ασ2

D1+σ2+D2
is approximately equal to α ≈ D1

D1+D2
if σ2 >> D1, D2. Hence the

decoder simply scales the received yN by a factor of γ and finds the codeword closest to γyN in

the Euclidean–distance sense. A practical watermarking system based on this concept is described

in Lin’s thesis [39]. For the conventional but suboptimal design U = Z in Sec. 4.2,
∑N

i=1 u
2
i

is approximately the same for all uN ∈ C, and the MAP decoding rule (4.5) is approximately

equivalent to the maximum–correlation rule

ûN = argmax
uN∈C

N
∑

i=1

uiyi. (4.6)
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If the pair of random variables (U, Y ) is non–Gaussian, or if
∑N

i=1 u
2
i is not the same for all uN ∈ C,

the maximum–correlation rule (4.6) is suboptimal. In current watermarking literature, a maximum–

correlation method similar to (4.6) is often used to assess the performance of watermark detection

algorithms, by testing an hypothesis uN = u∗N against the alternative uN 6= u∗N , for some fixed

watermark u∗N [21, 22]. These tests consist of comparing the correlation statistic
∑N

i=1 u
∗
i yi against

some threshold, and verifying that the empirical probability of error is low. Another commonly

used decision statistic is the normalized correlation coefficient between u∗N and yN [7, 11].

5 Small–Distortion Analysis

The case of small distortions D1 and D2 is typical of many information–hiding problems. One may

wonder whether some simplifications occur in the theory, possibly like in rate–distortion theory

[40].

We show that this is indeed the case. We consider the squared error distortion metric over the

real line and show that the hiding capacity is independent of the statistics of X̃, asymptotically as

D1, D2 → 0. This complements the analogous remarkable Costa–type result for Gaussian channels

in Sec. 4.2, which was however valid for all distortion levels. Our result is formally stated in

Theorem 5.1 below. An intuitive explanation for this apparently surprising result is that hiding

capacity is essentially determined by the geometry of small distortion balls, as there are many such

small balls within regions where p(x̃) is essentially flat.

Theorem 5.1 Let X = IR and d(x, y) = (x−y)2 be the squared–error distortion measure. Assume

that no key is used and that p(x̃) has zero mean and variance σ2 and is bounded and contin-

uous. Then the capacity C(D1, D2) is asymptotic to the hiding capacity in the Gaussian case:
1
2 log

(

1 + D1

D2

)

, as D1, D2 → 0. The distribution that asymptotically achieves capacity is the same

as in the Gaussian case: X = X̃+Z, U = Z+αX̃, where α = D1

D1+D2
, Z ∼ N (0, D1) is independent

of X̃, and Q(y|x) is the Gaussian test channel (4.3) (with β = 1).

Proof: See appendix.

6 Further Extensions

The framework developed in this paper can be used to analyze the performance of a variety of

information–hiding systems. Some useful extensions are considered below.

6.1 Steganography

The purpose of steganography is to convey a message to a receiver in such a way that the very

presence of the message is undetectable by a third party. Other restrictions may apply. In particular,
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we assume that the distortion constraints (3.1) and (3.3) are imposed on the information hider and

the attacker, respectively.

Cachin [14] introduced a natural requirement for steganographic systems. The information hider

can guarantee a certain level of undetectability provided that the relative entropy D(pX̃N ||pXN )

is no greater than some small, specified value ε. If ε is small enough, it becomes impossible for

the attacker to determine whether xN was drawn from the distribution p(xN ) or from p(x̃N ). The

requirement D(pX̃N ||pXN ) ≤ ε introduces an additional convex constraint on pXN and hence on

the covert channel Q̃N (xN , uN |x̃N , kN ).

For memoryless sources, the relative entropy increases linearly withN : D(pX̃N ||pXN ) = ND(pX̃ ||pX).

It follows that, unless D(pX̃ ||pX) = 0, information–hiding schemes are always detectable for large

enough N . The undetectability constraint is very strong. For perfect undetectability, we would

need D(pX̃ ||pX) = 0, hence pX̃ = pX (as in the Bernoulli example of Sec. 3.4). One can easily

show the following result. Let P0 be the set of all pX̃ such that pX̃(x̃) = pX̃(x̃′) for at least two

distinct x̃, x̃′ ∈ X . For finite alphabets X , the set P0 has measure zero. Then there exists D∗
1 such

that for all pX̃ /∈ P0 and D1 < D∗
1, the only p(x|x̃) that satisfies the constraints is δ(x− x̃), whence

the hiding capacity is zero. In other words, perfect undetectability and reliable transmission are

essentially incompatible requirements.

6.2 Attacker Knows Message

Some information–hiding systems may not use cryptographic keys, and moreover, the attacker may

know the information–hiding code. Hence the attacker is able to reliably decode the message. This

does not mean that he is able to remove traces of the message from X. Clearly, the hiding capacity

is upper–bounded by the capacity from Theorem 3.3, because the attacker uses more information.

But can the hiding capacity still be strictly positive?

The solution of this problem is as follows. We define an attack channel as a conditional p.m.f.

Q(y|x, u), and let Q be the set of all such channels satisfying the distortion constraint

∑

y,x,u,x̃,k

d(x, y)Q(y|x, u)Q̃(x, u|x̃, k)p(x̃, k) ≤ D2. (6.1)

Then we have the following theorem, which takes the same form as Theorem 3.3, except that

the set Q is larger than in Theorem 3.3.

Theorem 6.1 Assume the attacker knows the information-hiding code and the particular codeword

uN used, and the decoder knows the attack channel. For any attack subject to distortion D2, a rate

R is achievable if and only if R < C, where

C = max
Q̃(x,u|x̃,k)∈Q̃

min
Q(y|x,u)∈Q

J(Q̃,Q). (6.2)
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Proof. The proof parallels that of Theorem 3.3. For achievability, the encoder and decoder use

the same technique as in Proposition 3.1. But now the attacker is able to decode the codeword

u(j,m) used. He is then able to generate yN from the distribution QN (yN |xN , u(j,m)). In the

converse theorem (Prop. 3.2), the cardinality of the set U is set equal to 2|X | + |K|. This does

not compromise the optimality of the design of the covert channel, per Prop. 3.5(v), and makes it

possible to optimize the covert channel while keeping the attack channel fixed. 2

Corollary 6.2 In the special case K = X̃, the hiding capacity C in (6.2) is the same as C in (3.6)

and is achieved by the design U = X.

Proof. If the decoder knows X̃ , then by Corollary 3.4, U = X is an optimal design. If U = X, the

value of the added information U to the attacker is nil. 2

Gaussian channels. If the decoder does not know X̃ and does not have access to any key, what

is the performance of the encoding schemes in Sec. 4.2? Consider the design U = Z +αX̃ in Fig. 6

again. Under this design, we have X = U+(1−α)X̃ . Conventional information hiding systems use

α = 0 [11]. For any α 6= 1, the deterministic attack Y = 1
1−α (X−U) = X̃ is admissible if D2 ≥ D1.

But the rate of reliable transmission under this attack is zero! Can better performance be obtained

by choosing α = 1? In that case, U = X, and the value of the added information for the attacker

(U) is nil. Then the rate formulas of Sec. 4.2 apply directly. From (E.1), we see that the rate

of reliable transmission under the Gaussian test channel attack is R = 1
2 log D1(D1+σ2+βD2)

βD2(D1+σ2) . This

rate is zero for D2 ≥ D1 again. So for any value of α, the rate of reliable transmission is zero for

D2 ≥ D1. Such systems would be unreliable in many applications. Hence the information–hiding

code should not be publicly known, or at least the system should be designed using cryptographic

keys. In the special case K = X̃ , Corollary 6.2 shows there is no loss of performance due to the

attacker knowing the information–hiding code used.

6.3 Blockwise Memoryless Information Hiding and Attack Strategies

In this section, we extend the basic results of Sec. 3 to a simple class of attack channels with

memory. Practical applications of this setup would include problems in image processing, where

image data are partitioned into blocks, and the image is subject to some complex attack on each

block, rather than to independent attacks on the constituent pixels. A JPEG compression attack

would nearly fit this model 6. Using a boldface notation x = {x1, · · · , xL} ∈ XL for blocks, we

let QL(y|x) be a conditional p.m.f. from X L to XL which satisfies the distortion constraint (2.1)

for N = L. Consider blockwise memoryless attack channels, which are memoryless extensions of

QL(y|x):

QN (yN |xN ) =

N/L
∏

i=1

QL(yi|xi), ∀N = jL, j ≥ 1,

6In the JPEG standard, the DC coefficients are encoded using a DPCM technique. This introduces a small
dependency between blocks.
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where xi refers to the i–th block of data, xLi, · · · , xLi+L−1, and xN = {x1, · · · ,xN/L}. We refer to

L as the attack–channel blocklength. (The information–hiding codelength N is a multiple of L.)

Similarly, we define

Definition 6.1 A blockwise memoryless covert channel, subject to distortion D1, is a sequence of

conditional p.m.f.’s

Q̃N (xN , uN |x̃N , kN ) =

N/L
∏

i=1

Q̃L(xi,ui|x̃i,ki), ∀N = jL, j ≥ 1.

from XN ×KN to XN ×UN , such that

∑

x,x̃,u,k

dL(x̃,x) Q̃L(x,u|x̃,k) p(x̃,k) ≤ D1. (6.3)

Definition 6.2 The compound blockwise memoryless covert channel subject to distortion D1 is the

set Q̃L of all channels of the form (6.3).

The pair (X̃N ,KN ) is now assumed to be blockwise i.i.d.:

p(x̃N , kN ) =

N/L
∏

i=1

p(x̃i,ki) ∀N = jL, j ≥ 1. (6.4)

This is a generalization of the model in Sec. 3, which assumed the individual symbols (X̃i,Ki) to

be i.i.d. A block-diagram of the system is shown in Fig. 8. For the model (6.4), we obtain the

following result, which is a straightforward consequence of Theorem 3.3, using the alphabets KL

and XL in place of K and X . The auxiliary alphabet can be taken to have a product form U L

without loss of generality.

Theorem 6.3 Assume the attacker knows the covert channel, and the decoder knows the covert

and attack channels. For any attack subject to distortion D2, a rate R is achievable if and only if

R < CL, where

CL = max
Q̃L

min
QL

JL(Q̃L, QL) (6.5)

where

JL(Q̃L, QL) =
1

L
[I(UL;Y L|KL)− I(UL; X̃L|KL)], (6.6)

and (UL, X̃L,KL) → XL → Y L is a Markov chain.

It follows directly from Proposition 3.1 that, under the assumptions of a time–invariant, memo-

ryless attack and a memoryless source (X̃,K), the optimal (capacity–achieving) information–hiding

strategy is time–invariant and memoryless. Proposition 6.4 below establishes a dual result, namely,

under a memoryless information–hiding strategy, the worst attack channel is memoryless and time–

invariant.
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Proposition 6.4 Assume the source (X̃,K) is memoryless. Then we have

(i) Assume Q̃L(xL, uL|x̃L, kL) =
∏L

i=1 Q̃i(xi, ui|x̃i, ki). Let Qi(yi|xi) be the marginals of Q(y|x),
and Q

L
(y|x) =

∏L
i=1Q(yi|xi) be the product of these marginals. Then Q

L ∈ QL, and JL(Q̃L, Q
L
) ≤

JL(Q̃L, QL).

(ii) If the N covert channels Q̃i in Part (i) are independent of i, then the N optimal attack channels

Qi must also be independent of i.

Proof. See appendix.

6.4 Fingerprinting

In fingerprinting applications, the information hider makes several copies of the host data X̃ avail-

able to different users. However, a different message is embedded in each copy. The message is a

fingerprint, or serial number, which can be used to trace any unauthorized use of the signal back to

the user. The user should not be able to remove traces of the fingerprint without seriously degrad-

ing the signal, and the fingerprint itself should be imperceptible. It is well known that developing

a successful fingerprinting system is difficult, because of possible collusion between multiple users

[3, 11, 12]. We show below that collusion allows users to compute a good estimate of the host

signal, which contains little residual information about the individual messages.

We propose the following mathematical formulation of the fingerprinting problem. Referring

to Fig. 9, assume there are L users, all potential colluders. Let xl,i ∈ X be the data sent to user

l ∈ {1, · · · , L} at time i ∈ {1, · · · , N}. Also let xi = {x1,i, · · · , xL,i} ∈ XL, xl,N = {xl,1, · · · , xl,N} ∈
XN , and xN = {x1, · · · ,xN}. Each user’s sequence is individually encoded according to xl,N =

fN (x̃N ,ml, k
N ), 1 ≤ l ≤ L, whereml ∈M is the fingerprint for user l, and fN is the encoder defined

in Sec. 2. In other words, the same host signal and the same key are used for encoding all Lmessages.

The messages ml are assumed to be independent and uniformly distributed over M. Next, the

attack channel is defined as a conditional p.m.f. Q(y|x) from X L to XL, and its memoryless

extension as QN (yN |xN ) =
∏N

i=1Q(yi|xi). The sets of admissible covert and attack channels are

denoted by Q̃L and QL, respectively. Each message ml is decoded as m̂l = φN (yl,N , kN ), where φN

is the decoder defined in Sec. 2. The average probability of error is

Pe,N =
1

|M|
L
∑

l=1

∑

m∈M

P (φN (Y l,N ,KN ) 6= m |Ml = m).

Code rate and capacity can then defined as in Sec. 2. We obtain the following result.

Theorem 6.5 For any attack subject to distortion D2, a rate R is achievable if and only if R < CL,

where CL is given in (6.5). Assume that the distortion function d(x, y) is symmetric, D2 > D1,

and dmin = minx̃,x̃′ ds(x̃, x̃
′) > 0 for some s ∈ (0, 1), where ds(x̃, x̃

′) = − log
∑

x∈X p(x|x̃)
(

p(x|x̃)
p(x|x̃′)

)s

is the Chernoff distance between distributions p(·|x̃) and p(·|x̃′). Then the capacity CL tends to zero

exponentially fast (with rate lower-bounded by Ldmin) as L→∞.
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Proof. Assume the information hider uses the capacity–achieving distribution Q̃. Let each user

implement the memoryless attack X̂i = argmaxx̃ p(x̃|xi), the MAP estimate of X̃i from Xi. The

attack Yl,i = X̂i for all 1 ≤ l ≤ L defines an attack channel QL(y|x) and yields an upper bound

JL(Q̃L, QL) ≥ C on capacity. Next we use Fano’s inequality and Chernoff bounds to show that

H(X̂ |X̃) tends to zero exponentially fast with L, verify that the distortion constraint is satisfied,

and invoke a simple extension of (3.8) to conclude the proof.

The error probability for estimating X̃ is given by Pe(X̃) = Pr[X̂ 6= X̃|X̃ ]. Using the union–

of–events bound and Chernoff bounds on the probability of error of binary hypothesis tests [23],

we write

Pe(X̃) ≤
∑

x̃,x̃′

p(x̃)1−sp(x̃′)s2−Lds(x̃,x̃′) ≤ |X |2
4

2−Ldmin (6.7)

for any 0 < s < 1. Since dmin > 0 by assumption, the MAP estimate converges a.s. to X̃ as L→∞.

Hence EQLdL(x,y) → EQLdL(x, x̃) = D1, and the distortion constraint EQLdL(x,y) ≤ D2 is

satisfied for L large enough.

Now Fano’s lemma gives H(X̂ |X̃) ≤ δ(Pe(X̃)) where δ(Pe) = −(1−Pe) log(1−Pe)−Pe log Pe

|X |−1

is monotonically increasing over the interval [0, 1
2 ] and is asymptotic to Pe log P−1

e as Pe → 0. Hence

the Fano and Chernoff bounds can be combined to yield the upper bound

logH(X̂ |X̃)
<∼ −Ldmin, as L→∞. (6.8)

The technique used to establish (3.8) can be used again to show that C ≤ JL(Q̃L, QL) ≤
H(Y|X̃) = H(X̂ |X̃). The asymptotic inequality (6.8) implies that logC

<∼ −Ldmin as L→∞. 2

Observe that the optimal attack channel is not memoryless, and that the exponential decrease

in capacity holds for any p(x̃). The papers [11, 12] contain examples of specific fingerprinting

algorithms that are victims of the curse of large L. According to Theorem 6.5, these results hold

for a broad class of fingerprinting algorithms.

It may seem surprising that the MAP attack, which was so ineffective in problems of information

hiding using Gaussian data (Sec. 4.2) is so effective here. This is because the fingerprint attack,

while still deterministic, is many–to–one. Also observe that the bound (6.7) becomes looser as |X |
increases.

If the message to be embedded contains two parts: a message m that is common to all users

(say copyright information) and user–dependent messages ml (fingerprints), then the results above

suggest a two–stage encoding technique, where in the first stage the common messagem is embedded

in the data set x̃ to produce an intermediary data set x, and in the second stage the fingerprints

ml are embedded in the data set x to produce the fingerprinted data xN .
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7 Summary and Conclusions

We have presented an information–theoretic analysis of information hiding, including the funda-

mental theorem of information hiding that characterizes the communication rate achievable for the

information hider in the face of an optimal attack. The goal of the information hider is to maxi-

mize the rate of reliable transmission; the goal of the attacker is to minimize that rate. The payoff

function in this game is a difference between two mutual informations. Different expressions for

the hiding capacity are obtained depending on the knowledge available to the information hider, to

the attacker, and to the decoder. We have primarily focused on a scenario involving the following

assumptions. The information hider does not know the attack that will be implemented. The

attacker does not know the information–hiding code and hence is unable to decode the message.

He designs an attack channel Q(y|x) based on the data X available to him. The decoder knows the

information–hiding code and knows (or is able to learn) the attack channel. The allowed distortion

levels (under a specified distortion function d(x, y)) for the information hider and the attacker are

D1 and D2, respectively. These distortion levels respectively characterize the transparency of the

information–hiding scheme and the severity of the attacks.

Our analysis shows the fundamental role of optimal data compression strategies in the attack

and of channel coding in the hiding. Under the assumptions stated above, we have shown that the

hiding capacity is the solution to a maxmin optimization problem, and that saddlepoint solutions

are obtained in some cases. For instance, saddlepoint solutions are obtained when the host data

are available as side information to the decoder, as well as in blind–information–hiding problems

with Gaussian host data and a squared–error distortion function. In the latter case, the optimal

attack is the Gaussian test channel, and the hiding capacity is the same as if the host data were

available at the decoder. This result may seem surprising but is analogous to results by Costa [38]

and Chen [9]. The hiding capacity for non–Gaussian host data is upper–bounded by the capacity

for Gaussian host data with the same variance.

We have also conducted an analysis of the information–hiding problem in the case of small

squared–error distortion. Remarkable simplifications arise in this case. The hiding capacity is

asymptotic to C ∼ 1
2 log(1 +D1/D2), in the limit as D1, D2 → 0, independently of the statistics of

the host data set, whether or not the decoder knows the host data.

While reasonable assumptions have been made about the knowledge available to the information

hider, the attacker and the decoder, other assumptions may be preferable in some applications, and

would require an extension of our basic theory. We have briefly described some of these extensions.

For instance, the attacker might not know the covert channel that has been implemented, in which

case the optimal strategy is the solution to a different game. The solution under this optimistic

scenario is still a pure strategy for the attacker, but becomes a mixed strategy for the information

hider. A more pessimistic assumption is that the attacker knows or is able to learn the information–

hiding code used. In a system without cryptographic keys, the attacker would then be able to decode
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the message and design a more effective attack. We have derived an expression for the hiding

capacity in this case too, and shown that encoding strategies that are capacity–achieving when

the attacker is ignorant of the information–hiding code can be severely suboptimal (possibly zero)

otherwise. Our results suggest that the real test for information–hiding systems is when D2 ≥ D1,

which corresponds to most practical problems of interest in the information–hiding literature. Other

extensions of our work considered in this paper include the use of steganography constraints, that

guarantee that the very presence of a hidden message is undetectable, and multipler–user scenarios,

such as in fingerprinting applications. In this case, collusion between L users can have a devastating

effect on decoding performance, as hiding capacity is reduced by a factor 2L under some mild

technical conditions.

Much work remains to be done in designing practical information–hiding codes that approach

capacity. We anticipate this will be an active research area in the future. Our analysis has outlined

the potential benefits of using randomized codes. Other practical problems include the choice of a

suitable distortion measure, which is a holy grail in audio, image and video processing. Theoretical

problems include computation of error exponents and reliability function [8], and design of universal

decoders that perform well for a broad class of attack channels.
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A Proof of Proposition 3.1

Here we prove achievability. The proof parallels the proof of Proposition 2 in [29]. First recall some

definitions [23]. The type, or empirical probability distribution P (a|xN ) of the sequence xN is N−1

times the number of occurrences of the symbol a ∈ X in the sequence xN . The strongly typical set

TN
X (η) is the set of sequences in XN whose type does not differ from its expected value by more

than η
|X | in any component:

TN
X (η) =

{

xN ∈ XN : |P (a|xN )− pX(a)| < η

|X | , ∀a ∈ X
}

.

The strong law of large numbers implies that for all η > 0, Pr[xN ∈ TN
X (η)] → 1 as N →∞. The

definition of strongly typical sets TN
XY (η) for pairs of random variables (XN , Y N ), for triples, etc.

is similar to the definition of TN
X (η) above.

Let M = {1, 2 · · · , 2N [I(U ;Y |K)−I(U ;X̃|K)−2ε]} and R = 1
N log |M|. Using the same type of

identity as in (3.8), we have I(U ;Y |K) − I(U ; X̃ |K) = I(U ;Y,K) − I(U ; X̃,K). We generate

codewords uN ∈ UN whose letters un, 1 ≤ n ≤ N are independently drawn from the distribution

p(u). For every message m ∈M, we generate J = 2N [I(U ;X̃,K)+ε] independent codewords from the

distribution p(uN ). We denote each codeword by u(j,m), 1 ≤ j ≤ J, m ∈ M. The size of the

codebook is J |M| = 2N [R+I(U ;X̃,K)+ε]. The number η in the definition of the strongly typical sets

below is a function of ε such that η → 0 as ε→ 0. The encoder and decoder perform the following

operations.

Encoder. Given any x̃N ∈ X̃N , kN ∈ KN and m ∈ M, the encoder seeks a codeword

in {u(j,m), 1 ≤ j ≤ J} that is jointly typical with (x̃N , kN ). Specifically, the encoder seeks

the smallest j such that (u(j,m), x̃N , kN ) ∈ TN
UX̃K

(η). (An encoding error is declared and j is

set equal to zero if no such j can be found, but the strong law of large numbers ensures this

event has vanishing probability pee.) Let j(x̃N , kN ,m) be the corresponding value of j. Given

x̃N , kN and u(j(x̃N , kN ,m),m), the encoder then randomly generates xN from the distribution

Q̃(xN |x̃N , u(j(x̃N , kN ,m),m), kN ). The expected distortion is upper–bounded by (1 − pee)D1 +

peedmax. If pee tends to zero, the pair (x̃N , xN ) is distortion typical [23].

Decoder. Given the received sequence yN and the key kN , the decoder seeks a codeword

u(j,m), 1 ≤ j ≤ J,m ∈M in the codebook, such that (u(j,m), yN , kN ) ∈ TN
UY K(η), i.e., u(j,m) is

jointly typical with (yN , kN ). A decoding error is declared if no such codeword can be found or if sev-

eral codewords indexed by different m’s are found. Proceeding as in [29], it is seen that the probabil-

ity of error is dominated by the event that there exist j ′ and m′ 6= m such that (u(j ′,m′), yN , kN ) ∈
TN

UY K(η). The probability of this event is upper–bounded by J |M|2−N [I(U ;Y,K)−ε/2] = 2−Nε/2. The

total probability of error is less than ε. If a codeboook chosen at random from the distribution

p(uN ) has probability of error lower than ε, then there exists at least one codebook with probability

of error lower than ε. This proves achievability of all rates below I(U ;Y |K)− I(U ; X̃ |K).
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B Proof of Proposition 3.2

Here we prove the converse coding theorem.

We show that, for a given attack, any sequence of codes with rate log |M| = NR and error

probability Pe,N = P [M̂ 6= M |Y N ,KN ] → 0 must satisfy the following condition: there exists a

covert channel Q̃(x, u|x̃, k) such that 1
N log |M| = R ≤ maxQ̃[I(U ;Y |K) − I(U ; X̃ |K)], and the

distortion constraints (3.1) and (3.3) are satisfied.

We have

NR = H(M) = H(M |KN ) = H(M |Y N ,KN ) + I(M ;Y N |KN )

≤ 1 + Pe,NNR+ I(M ;Y N |KN ) (B.1)

where the first equality is because the messages M are drawn from a uniform distribution, the

second is because M and KN are independent, the third follows from the definition of mutual

information, and the inequality is Fano’s inequality. If Pe,N → 0 as N → ∞, then (B.1) implies

NR ≤ I(M ;Y N |KN ) as N →∞.

Because M and (X̃N ,KN ) are independent, we have

I(M ;Y N |KN ) = I(M ;Y N |KN )− I(M ; X̃N |KN )

= H(M |X̃N ,KN )−H(M |Y N ,KN ).

BecauseXN is a function of (X̃N ,KN ,M), the sequence (X̃N ,KN ) → (X̃N ,KN ,M) → (XN , X̃N ,KN )

is a Markov chain, and

H(M |X̃N ,KN ) = H(X̃N ,KN ,M |X̃N ,KN )

≤ H(XN , X̃N ,KN |X̃N ,KN ).

Furthermore, by construction, (M,KN ) → (X̃N ,KN ,M) → (XN , X̃N ,KN ) → (Y N ,KN ) is a

Markov chain, so

H(M |Y N ,KN ) = H(M,KN |Y N ,KN )

≥ H(XN , X̃N ,KN |Y N ,KN ).

Combining these inequalities yields

I(M ;Y N |KN ) ≤ H(XN , X̃N ,KN |X̃N ,KN )−H(XN , X̃N ,KN |Y N ,KN )

= I(XN , X̃N ,KN ;Y N |KN )− I(XN , X̃N ,KN ; X̃N |KN )

= [H(Y N |KN )−H(Y N |XN , X̃N ,KN )]−H(X̃N |KN )

= H(Y N |KN )−
N
∑

i=1

H(Yi|Xi)−
N
∑

i=1

H(X̃i|Ki)
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(a)
=

N
∑

i=1

[

H(Yi|Y1, · · · , Yi−1,K
N )−H(Yi|Xi)−H(X̃i|Ki)

]

(b)

≤
N
∑

i=1

[

H(Yi|Ki)−H(Yi|Xi)−H(X̃i|Ki)
]

=
N
∑

i=1

[

H(Yi|Ki)−H(Yi|Xi, X̃i,Ki)−H(X̃i|Ki)
]

=
N
∑

i=1

[

I(Xi, X̃i,Ki;Yi|Ki)− I(Xi, X̃i,Ki; X̃i|Ki)
]

where equality (a) follows from the chain rule for conditional entropy [23], and inequality (b) is

because conditioning reduces entropy. Now defining the N random variables Ui = (Xi, X̃i,Ki), we

obtain

I(M ;Y N |KN ) ≤
N
∑

i=1

[

I(Ui;Yi|Ki)− I(Ui; X̃i|Ki)
]

≤ N max
i

[

I(Ui;Yi|Ki)− I(Ui; X̃i|Ki)
]

≤ N max
Q̃

[

I(U ;Y |K)− I(U ; X̃ |K)
]

.

Hence the converse theorem follows.

C Proof of Proposition 3.5

Here we prove convexity properties of the payoff (3.4).

(i) Both sets Q̃ and Q are defined by the linear inequalities (3.1) and (3.3), respectively.

(ii)—(v) These properties are immediate extensions of results in [29].

(vi) Fix p(u|x̃, k). The distortion constraint (3.1) written as a function of p(x|x̃, u, k) becomes
∑

x,x̃,u,k

d(x̃, x)p(x|x̃, u, k)p(u, x̃, k) ≤ D1.

Ignoring momentarily the distortion constraint, we see that the set P ′
0 of admissible p(x|x̃, u, k)

is the Cartesian product of |X ||U||K| probability simplices in IR |X |. Hence P ′0 is a closed,

convex, polyhedral set. Its vertices (extremal points) are characterized by the following

property: the functions p(·|u, x̃, k) are zero/one functions for all (u, x̃, k). In the presence

of distortion constraints, the admissible set P0 is the intersection of P ′0 above with the half

hyperplane specified by the distortion constraint. So P0 is a closed, convex, polyhedral set

whose vertices lie on an edge between two vertices of P0. For compactness of notation, denote

by j(p) the payoff (3.4) viewed as a function of p(x|x̃, u, k). From Part (iv) of the proposition,

j(p) is convex and hence its maximum over P0 is achieved on one of the vertices of P0. This

proves the claim.
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D Proof of Theorem 4.1

By application of Theorem 3.3, the payoff is I(X;Y |X̃). For Gaussian p(x̃), we shall verify

that p(x|x̃) and Q(y|x) given in the statement of the theorem form a saddlepoint of the pay-

off, I(X;Y |X̃). This is done in two steps. First we fix Q(y|x), and verify that p(x|x̃) maximizes

I(X;Y |X̃) subject to the distortion constraint (3.3). The second step consists of fixing p(x|x̃),
and verifying that Q(y|x) minimizes I(X;Y |X̃) subject to the constraint (3.3). Note that X has

variance σ2 +D1. If D2 ≥ σ2 +D1, then the attack channel Q(y|x) = δ(y) is admissible, and J = 0

no matter what the covert channel is. So C = 0 in this case. In the following, we evaluate the

alternative, D2 < σ2 +D1.

Step 1. Fix Q(y|x) as indicated in (4.3). We do not require p(x̃) to be Gaussian. The

Gaussian test channel (4.3) takes the form shown in Fig. 6, where W ∼ N (0, βD2) is independent

of X, V = X +W , and Y = β−1V . We write

J
(a)
= I(X;Y |X̃)

(b)
= I(X;V |X̃)

(c)
= h(V |X̃)− h(V |X, X̃)

(d)
= h(V |X̃)− h(V |X), (D.1)

where (a) follows from Corollary 3.4, (b) is because Y is a deterministic function of V , (c) follows

from the definition of conditional mutual information, and (d) holds because X̃ → X → V forms a

Markov chain. The second term in the right–hand side of (D.1) is given by h(V |X) = 1
2 log(2πeβD2),

and only the first term, h(V |X̃), depends on p(x|x̃). Let Z = X−X̃ . Observe that Z is independent

of W , because Z → X →W forms a Markov chain, and X is independent of W . Also,

E|V − X̃|2 = E|Z +W |2 (a)
= E|Z|2 +E|W |2 ≤ D1 + βD2

where equality (a) holds because Z and W are independent, and the inequality holds because of

the distortion constraint (3.1). Hence

h(V |X̃) ≤ 1

2
log(2πe(D1 + βD2))

and J ≤ 1
2 log

(

1 + D1

βD2

)

, with equality if Z ∼ N (0, D1) is independent of X̃. This proves the claim

(ii).

Step 2. Fix p(x|x̃) as indicated in the statement of the theorem. Assume that X̃ ∼ N (0, σ2),

so X ∼ N (0, σ2 + D1). For any given Q(y|x), let a = E[XY ]
E[X2] , V = a−1Y , and W = V − X. It

follows from this definition that E[XW ] = 0. The distortion constraint (3.3) takes the form

D2 ≥ E|Y −X|2 = E|(a− 1)X + aW |2 = (a− 1)2(σ2 +D1) + a2E|W |2. (D.2)

Now

J = I(X;Y |X̃) = I(X;V |X̃) = I(X − X̃;V − X̃ |X̃) = I(Z;Z +W |X̃)

(a)
= h(Z)− h(Z|Z +W, X̃)

(b)

≥ h(Z)− h(Z|Z +W ) = I(Z;Z +W )
(c)

≥ I(Z;Z +W ∗)
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where W ∗ is a Gaussian random variable that has zero mean and the same variance as W . discuss

mean Here equality (a) is because Z and X̃ are independent, inequality (b) follows from the fact

that conditioning reduces entropy, and inequality (c) can be found in [41]. These inequalities are

satisfied with equality if W is Gaussian and independent of X̃. Since X and W ∗ are independent

and Z → X →W ∗ forms a Markov chain, Z and W ∗ are also independent. Hence the lower bound

above becomes

J ≥ I(Z;Z +W ∗) =
1

2
log

(

1 +
D1

E|W |2
)

,

which is a decreasing function of E|W |2. The lowest possible bound is obtained by maximizing

E|W |2 subject to the constraint (D.2), where a ∈ IR. After some algebra, we obtain E|W |2 = βD2

and a = β−1, namely, Q(y|x) is the Gaussian test channel. In this case, all the inequalities above

are satisfied with equality. Hence the Gaussian test channel is the optimal attack.

E Proof of Theorem 4.2

In order to prove the saddlepoint property, the first step is to fix Q(y|x) and show that the optimal

Q̃(x, u|x̃) is the one specified in the statement of the theorem. We only briefly sketch this step,

which is a simple variation on a result in [38]. The Gaussian test channel Q(y|x) may be viewed as

the cascade of an additive white Gaussian noise channel with variance βD2 and a multiplier D2/β,

as illustrated in Fig. 6. The payoff is given by I(U ;Y ) − I(U ; X̃) = I(U ;V ) − I(U ; X̃). Consider

the particular design U = Z + αX̃ . The rate of reliable transmission in this case is given by

R(α) =

{

1
2 log D1(D1+σ2+βD2)

D1σ2(1−α)2+βD2(D1+α2σ2)
: if D2 < σ2 +D1

0 : else.
(E.1)

The value of α that maximizes R(α) is α = D1

D1+βD2
. The corresponding value of R(α) is equal

to (4.2). Since capacity could not possibly be larger than in the case where X̃ is known at the

decoder, the design U = Z + αX̃ with α = D1

D1+βD2
is optimal.

The second step in the proof is to fix Q̃(x, u|x̃) and show that the optimal Q(y|x) is the Gaussian

test channel. Notice that the payoff (3.4) depends on Q only through I(U ;Y ). We shall in fact

show that for any Gaussian–distributed pair (U,X), the distribution Q(y|x) that minimizes I(U ;Y )

over Q is the Gaussian test channel. Let Y ∗ be a Gaussian random variable such that (U,X, Y )

and (U,X, Y ∗) have the same second–order statistics. Then we use the classical inequality [41]

I(U ;Y ) ≥ I(U ;Y ∗) =
1

2
log

ruuryy

ruuryy − r2uy

(E.2)

where we use the notation rXY = E[XY ] − E[X]E[Y ]. Equality is achieved in (E.2) if (U, Y )

is jointly Gaussian distributed with zero mean. We minimize the lower bound I(U ;Y ∗) over all

possible distributions that satisfy the distortion constraint (3.3) and show that the minimum is

achieved for the Gaussian test channel. The argument is based on the geometric representation of
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second–order random variables. Let P be the joint probability distribution of the random variables

A = (U,X, Y ). Define the Hilbert space L2(A) induced by the inner product< a, b >= E[ab], where

a, b ∈ L2(A), and the expectation is taken with respect to the distribution P . Then minimizing the

right–hand side − 1
2 log(1− r2

uy

ruuryy
) of (E.2) is equivalent to maximizing

ruuryy

r2uy

=
‖U‖2‖Y ∗‖2
< U, Y ∗ >2

= cos2 θ,

where ‖ · ‖ is the norm induced by the inner product above, and cos θ is the angle between the

vectors U and Y in L2(A). The constraint (3.3) takes the form

‖Y −X‖2 ≤ D2, (E.3)

which is the equation of a circle of radius
√
D2 centered at X, see Fig. 10. The vector Y that

minimizes cos2 θ subject to the constraint (E.3) is tangent to the circle above. Hence the solution

satisfies the orthogonality property < Y, Y −X >= 0, no matter what U is. This solution is the

Gaussian test channel. 2

F Proof of Theorem 5.1

For clarity, here we explicitly indicate the subscripts on the pdfs pX̃(x̃), pX(x) and pY (y). Let

Q̃∗(x, u|x̃) and Q∗(y|x) be the two distributions specified in the statement of the theorem. Hence

Q̃∗(x, u|x̃) =
1√
D1

φ

(

x− x̃√
D1

)

δ(x− u− (1− α)x̃), and Q∗(y|x) =
1√
D2

φ

(

y − x√
D2

)

where φ(·) denote the standard normal distributionN (0, 1), and δ(·) is the Dirac distribution. Now,

using elementary properties of the mutual information, we write the payoff (3.4) as

J(Q̃∗, Q) =

∫ ∫

pX̃(x̃)ψ(Q, x̃) dx̃, (F.1)

where

ψ(Q, x̃) =

∫ ∫ ∫

Q(y|x)Q̃∗(x, u|x̃) log
p(u|y)
p(u|x̃) dydxdu. (F.2)

Since pX̃(x̃) is smooth, the minimizing Q(y|x) is also smooth in both x and y; hence we conduct

our analysis assuming that Q(y|x) is smooth. We first prove the following claim.

Claim: For fixed Q and x̃, ψ(Q, x̃) does not depend on the distribution pX̃ as D1, D2 → 0.

Proof: We have p(u|x̃) =
∫

Q̃∗(x, u|x̃) dx, so any dependency of ψ(Q, x̃) on pX̃ is via the term

p(u|y) =
p(y, u)

pY (y)
=

1

pY (y)

∫ ∫

Q(y|x)Q̃∗(x, u|x̃)pX̃(x̃) dx dx̃. (F.3)

Consider

pY (y) =

∫

Q(y|x)pX(x) dx (F.4)
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where

pX(x) =

∫
[
∫

Q̃∗(x, u|x̃) du

]

pX̃(x̃) dx̃

=

∫

1√
D1

φ

(

x− x̃√
D1

)

pX̃(x̃) dx̃. (F.5)

Since pX̃ is bounded and continuous, (F.5) implies that pX converges uniformly to pX̃ as D1 → 0.

A similar but slightly weaker argument can be applied to (F.4): since Q(y|x) satisfies the distortion

constraint (3.3), the Chebyshev–like inequality

∫

p(x)

∫ x+δ

x−δ
Q(y|x) dydx ≥ 1− D2

δ2
, ∀D2, δ > 0,

ensures convergence of pY to pX (and hence to pX̃). This convergence is nonuniform unless pX(x)

is bounded away from zero. We now write (F.3) as

p(u|y) =
1

pY (y)

∫ ∫

Q(y|x) 1√
D1

φ

(

x− x̃√
D1

)

δ(x− u− (1− α)x̃) pX̃(x̃) dx dx̃

=

∫

Q(y|u+ (1− α)x̃)
1√
D1

φ

(

u− αx̃√
D1

)

pX̃(x̃)

pY (y)
dx̃.

Define the family of sets X (η) = {x̃ : pX̃(x̃) > η}. The union of these sets is dense in the support

set of pX̃ . For any δ, η > 0 and y ∈ X (η), there exist D1, D2 small enough so that (1) the integral

above can be approximated with arbitrary accuracy by an integral from y− δ to y+ δ, and (2) the

ratio
p

X̃
(x̃)

pY (y) is arbitrarily close to 1, for any x̃ ∈ [y − δ, y + δ]. Hence p(u|y) does not depend on pX̃

as D1, D2 → 0. We conclude that ψ(Q, x̃) in (F.2) does not depend on pX̃ as D1, D2 → 0. This

proves the claim.

The developments above imply that the function ψ(Q, x̃) essentially involves local values of

Q(y|.) in a small neighborhood of x̃. Since pX converges uniformly to pX̃ , we have

J(Q̃∗, Q) =

∫

pX̃(x̃)ψ(Q, x̃) dx̃ ∼
∫

pX(x)ψ(Q,x) dx as D1, D2 → 0.

We now minimize the asymptotic form of J(Q̃∗, Q) above with respect to Q, subject to the distortion

constraint (3.3). The inequality (3.3) must be satisfied with equality. We define the Lagrange

functional

L(Q,λ) = J(Q̃∗, Q) + λ

∫ ∫

pX(x)Q(y|x)|y − x|2 dxdy

=

∫

pX(x)φ(Q,λ, x) dx (F.6)

where

φ(Q,λ, x) = ψ(Q,x) + λ

∫

Q(y|x)|y − x|2 dy (F.7)

satisfies the same asymptotic locality properties as ψ(Q,x), and the Lagrange multiplier λ ≥ 0 is

selected so as to satisfy the constraint (3.3). Let Q∗∗
λ be the minimum of L(Q,λ) with respect to
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Q. Assume momentarily that pX̃ is Gaussian. Then according to Theorem 4.2, Q∗∗
λ is the Gaussian

test channel Q∗λ corresponding to a particular distortion level D2(λ). Due to the asymptotic locality

property of φ(Q,λ, x), Q∗
λ also minimizes φ(Q,λ, x), as D1, D2 → 0. Also, the term that multiplies

λ in (F.7) is equal to D2(λ) for all x when Q = Q∗
λ, so the distortion integral

∫ ∫

pX(x)Q∗λ(y|x)|y−
x|2 dxdy = D2(λ) for all pX .

The second term in the right–hand side of (F.7) is thus independent of pX , and the first term

is asymptotically independent of pX . Hence the minimum of φ(Q,λ, x) is achieved by some Qλx

that is independent of pX . But Q∗λ minimizes φ(Q,λ, x) under Gaussian pX̃ , and therefore does so

under any other pX̃ . Hence Q∗λ minimizes L(Q,λ) under any pX̃ , for any λ ≥ 0. Choosing λ so

as to satisfy the distortion constraint (3.3) with equality, we conclude that Q∗ minimizes J(Q̃∗, Q)

subject to the constraint (3.3). Moreover, by Theorem 4.1(i), minQ J(Q̃∗, Q) ∼ 1
2 log

(

1 + D1

D2

)

,

even if pX̃ is non–Gaussian. Theorem 4.1(ii) then implies that no Q̃ could be better than Q̃∗, hence

Q̃∗, Q∗ are asymptotically capacity–achieving distributions, as D1, D2 → 0.

G Proof of Proposition 6.4

Here we show that the optimal attack for a time–invariant, memoryless covert channel is time–

invariant and memoryless.

(i) (Memoryless). By definition of the mutual information, we have

I(UN ;Y N |KN )− I(UN ; X̃N |KN ) = H(UN |X̃N ,KN )−H(UN |Y N ,KN )

The attacker has no control over the first conditional entropy on the right side but tries to maximize

the second one. Now

H(UN |Y N ,KN ) =
N
∑

i=1

H(Ui|U i−1, Y N ,KN ) ≤
N
∑

i=1

H(Ui|Yi,Ki) (G.1)

where the equality follows from the chain rule for entropy [23, p. 21], and the first inequality follows

from the fact that conditioning reduces entropy. Since Ki are mutually independent, equality is

achieved in this inequality if and only if Ui is independent of Yj ,∀j 6= i. Equality is achieved for a

memoryless attack channel. Hence JN (Q̃N , QN ) ≥ JN (Q̃N , Q
N

).

The final step in the proof is to observe that if the attack channel QN (yN |xN ) lies in the admis-

sible set QN , then so does the product of its marginals, Q
N

(yN |xN ), as the expected distortions

under QN and Q
N

are equal.

(ii) (Time–invariant). From part (i), the cost function to be minimized by the attacker takes the

form JN (Q̃N , QN ) =
∑N

i=1 J(Q̃,Qi). The attack is subject to linear constraints
∑N

i=1 EQi
d(x, y) ≤

D2 and
∑

y Qi(y|x) = 1, for all x ∈ X . The cost function is strictly convex in {Qi}, and both the

cost function and the constraints are invariant to permutations of the indices i. Hence Qi must be

independent of i to achieve the minimum.
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Figure 1: Formulation of information hiding as a communication problem. Here M is the message
to be embedded in the host data set X̃N and transmitted to the decoder. The composite data set
XN is subject to attacks embodied by the channel Q(y|x). The encoder and the decoder share a
common cryptographic key KN .
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Figure 2: Constrained design of information–hiding system, used in current watermarking literature.
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Figure 3: Channel with random parameters s that are known at the encoder but not at the decoder.
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Figure 4: Binary channel with optimal information–hiding and attack strategies. Here X̃ ∼
Bernoulli( 1

2 ), U ∼ Bernoulli(D1), and W ∼ Bernoulli(D2) are mutually independent random vari-
ables.
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Figure 5: The information–hiding game. Any choice of Q̃ and Q by the information hider and the
attacker constitutes a strategy. A Nash equilibrium of the game is attained when the information
hider uses an optimal mixed strategy (chooses Q̃ according to some optimal distribution P̃ ), and
the attacker uses a pure strategy.
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Figure 6: Optimal information–hiding and attack strategies when host data X̃ ∼ N (0, σ2) are
available at the decoder. Here Z ∼ N (0, D1) and W ∼ N (0, βD2) are mutually independent

random variables, and β =
(

1− D2

σ2+D1

)−1
. The optimal attack is the Gaussian test channel with

distortion level D2.
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Figure 7: Rates of reliable transmission for Gaussian channels, using different information–hiding
strategies, assuming D2 = 1 and σ = 10. Current designs in the literature often operate far below
capacity, as indicated on the graph and discussed in the text.
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Figure 8: Block-diagram for blockwise-i.i.d. sources and blockwise memoryless attack channels.

x  ...  x1       N
~       ~

y  ...  y 1       N

1,1      1,Nx     ... x y     ... y1,1       1,N

x     ... xL,1      L,N

M

ML

ML

M

   y     ... yL,1      L,N

Block

       

Deblock

Decoder

Decoder

1
1

 ^

 ^

Encoder

Encoder

. . ..

.
..

..
...

1        Nk  ...  k

user 1

user L user L

user 1

ATTACK

Q(      )y|x
1       Nx  ...  x

Figure 9: Block-diagram representation of the fingerprinting problem.
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Figure 10: Minimization of I(U ;Y ).
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